The mouse Na(+)-sulfate cotransporter gene Nas1. Cloning, tissue distribution, gene structure, chromosomal assignment, and transcriptional regulation by vitamin D.

نویسندگان

  • L Beck
  • D Markovich
چکیده

NaSi-1 is a Na(+)-sulfate cotransporter expressed on the apical membrane of the renal proximal tubule and plays an important role in sulfate reabsorption. To understand the molecular mechanisms that mediate the regulation of NaSi-1, we have isolated and characterized the mouse NaSi-1 cDNA (mNaSi-1), gene (Nas1), and promoter region and determined Nas1 chromosomal localization. The mNaSi-1 cDNA encodes a protein of 594 amino acids with 13 putative transmembrane segments, inducing high affinity Na(+)-dependent transport of sulfate in Xenopus oocytes. Three different mNaSi-1 transcripts derived from alternative polyadenylation and splicing were identified in kidney and intestine. The Nas1 gene is a single copy gene comprising 15 exons spread over 75 kilobase pairs that maps to mouse chromosome 6. Transcription initiation occurs from a single site, 29 base pairs downstream to a TATA box-like sequence. The promoter is AT-rich (61%), contains a number of well characterized cis-acting elements, and can drive basal transcriptional activity in opossum kidney cells but not in COS-1 or NIH3T3 cells. We demonstrated that 1,25-dihydroxyvitamin D(3) stimulated the transcriptional activity of the Nas1 promoter in transiently transfected opossum kidney cells. This study represents the first characterization of the genomic organization of a Na(+)-sulfate cotransporter gene. It also provides the basis for a detailed analysis of Nas1 gene regulation and the tools required for assessing Nas1 role in sulfate homeostasis using targeted gene manipulation in mice.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional and structural characterization of the zebrafish Na+-sulfate cotransporter 1 (NaS1) cDNA and gene (slc13a1).

Sulfate plays an essential role during growth, development and cellular metabolism. In this study, we characterized the function and structure of the zebrafish (Danio rerio) Na+-sulfate cotransporter 1 (NaS1) cDNA and gene (slc13a1). Zebrafish NaS1 encodes a protein of 583 amino acids with 13 putative transmembrane domains. Expression of zebrafish NaS1 protein in Xenopus oocytes led to Na+-sulf...

متن کامل

Transcriptional profile reveals altered hepatic lipid and cholesterol metabolism in hyposulfatemic NaS1 null mice.

Sulfate plays an essential role in human growth and development, and its circulating levels are maintained by the renal Na+-SO42- cotransporter, NaS1. We previously generated a NaS1 knockout (Nas1-/-) mouse, an animal model for hyposulfatemia, that exhibits reduced growth and liver abnormalities including hepatomegaly. In this study, we investigated the hepatic gene expression profile of Nas1-/...

متن کامل

Potential roles of 5´ UTR and 3´ UTR regions in post-trans-criptional regulation of mouse Oct4 gene in BMSC and P19 cells

Objective(s):OCT4 is a transcription factor required for pluripotency during early embryogenesis and the maintenance of identity of embryonic stem cells and pluripotent cells. Therefore, the effective expression regulation of this gene is highly critical. UTR regions are of great significance to gene regulation. In this study, we aimed to investigate the potential regulatory role played by 5´UT...

متن کامل

A murine transgenic model for transcriptional regulation of the Na/Pi-IIa major renal phosphate cotransporter.

Levels of the type IIa Na/P(i) (Na/Pi-IIa) cotransporter, which serves as the principal mediator of phosphate reabsorption in the kidney, can be modulated through posttranscriptional or posttranslational mechanisms by dietary, hormonal, and pharmacological influences. Previous studies have not demonstrated clear-cut evidence for modulation of Na/Pi-IIa cotransporter levels through transcription...

متن کامل

Expression and transport properties of the human ileal and renal sodium-dependent bile acid transporter.

The enterohepatic circulation of bile acids is maintained by Na+-dependent transport mechanisms. To better understand these processes, a full-length human ileal Na+-bile acid cotransporter cDNA was identified using rapid amplification of cDNA ends and genomic cloning techniques. Using Northern blot analysis to determine its tissue expression, we readily detected the ileal Na+-bile acid cotransp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 275 16  شماره 

صفحات  -

تاریخ انتشار 2000